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Elemental hydrogen is the cleanest, most cost-effective reductantTable 1.

“hydrogenations”, are practiced industrially on vast séél€on-
ventional hydrogenation involves delivery of hydrogen to a single
functional group. The addition of hydrogen across multiple
functional groups accompanied by-C bond formation is observed

in hydroformylation, the largest volume application of homogeneous
metal catalysi8,and the parent FischeTropsch reaction, a process
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. Iridium Catalyzed Hydrogenative Coupling of 2-Butyne to
available. Accordingly, reductions mediated by hydrogen, termed Aromatic and Aliphatic N-Arylsulfonyl Aldimines®
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1a, R=Ph, Ar=Ps
2a,R=p-CIPh,Ar=Ts
3a,R=0-CIPh,Ar=Ts

7a,R=2-Furyl, Ar=Ts
8a, R =2-Thienyl, Ar=Ps
9a,R=cHex Ar=Ts

enabling production of petroleum from hydrogen and carbon 4a,R=pMeOPh,Ar=Ps  10a,R=nPrAr=Ts PhoP PPh,
. . . 5a, R = 0-MeOPh, Ar = P 11a, R =i-Pr, Ar = P
monoxide? These prototypical hydrogen-mediated-C bond P A A BIPHEP
formations require carbon monoxide as a coupling partner. Given
the impact of these processes, systematic efforts toward hydrogen- PeH TeH TR g
. . . . Me™ ™ Me™ N Me™
mediated C-C bond formations beyond carbon monoxide coupling Ve Me o Me
,6

are Warrantea' X . 1b, 68% Yield 2b, 73% Yield 3b, 60% Yield

We have developed a novel class of hydrogenations wherein two > 955 E:Z >95:5 E:Z >955 £:Z
or more unsaturated molecules combine to furnish a single, more PsNH PsNH PsNH
complex molecule upon exposure to gaseous hydrogen in the Me™SS Me™ OMe e~
presence of a metal catalyst.Such ‘C—C bond forming hydro- Me ome M Ve

i i i T 4b, 70% Yield 5b, 74% Yield 6b, 85% Yield
genation$ enable (_Jllrect coupllng_of diverse-unsaturated com- % 0515 E7 5955 E7 > 055 E7
pounds to conventional electrophiles, such as carbonyl compounds TeNH PeNH TeNH
and imines, providing an alternative to stoichiometrically preformed SN I M s MES
organometallic reagents in certair& (X = O, NR) addition ve L7 ve L7 Me
processes. In the specific case of imine addition, the asymmetric 7b, 82% Yield 8b, 81% Yield 9b, 75% Yield
R H ] >955 E:Z >955 EZ >955E:Z
coupling of 1,3-enynes and 1,3-diynes to eth\-qulfinyl)-
iminoacetate’® and the enantioselective coupling of acetylene to TsNH PsNH " PsNH
. . . . e

N-arylsulfony! aldimine® were devised. These transformations, Me/\)\/\'v'e Me™ MeW

. . . . Me Me Me Me
which employ rhodium-based catalysts, furnidienyl allylic

. L . . . . 10b, 68% Yield 11b, 71% Yield 12b, 87% Yield
amines Attempted imine vinylation under the conditions of rhodium > 955 EZ > 955 EZ >95:5 E:Z

catalysis using 1,2-dialkyl-substituted alkynes led to conventional

alkyne hydrogenation. ol oy, 5-Butyne is deliuerod > b
i T RTR _ p-toluenesulfonyl). 2-Butyne is delivered as a vapor via cannula transfer
Recently, under the conditions of iridium-catalyzed hydrogena with the assistance of a hydrogen balloon to a’60toluene solution of

tion 8 we found that simple 1,2-dialkyl-substituted alkynes undergo imine. See Supporting Information for detailed experimental procedures.
reductive coupling toa-ketoesters to furnish3,y-unsaturated
a-hydroxy esters®®Here, we report that iridium-catalyzed hydro-  2-butyne under these conditions to deliver allylic arrifibén 82%
genation of simple nonconjugated alkynes in the presence of isolated yield. A range of aromatic, heteroaromatic, and aliphatic
N-arylsulfonyl aldimines provides the corresponding trisubstituted N-arylsulfonyl imines 1a—12a couple under these conditions,
allylic amines with complete levels dE:Z selectivity &95:5). enabling access to trisubstituted allylic aminds—12b, which
Remarkably, the unsaturated products are not subject to over-appear as single geometrical isomers (Table 1). As previously
reduction under the conditions of hydrogen-mediated coupling. observed® carboxylic acid cocatalysts enhance rate and conversion,
Further, nonsymmetric alkynes are found to couple with excellent presumably by circumventing highly energetic four-centered transi-
levels of regiocontrol. This protocol enables direct imine vinylation tion structures foro-bond metathesis, as required for direct
in the absence of preformed organometallic reagents and representalydrogenolysis of azametallacyclic intermediaties with six-
the first iridium-catalyzed alkyneimine reductive coupling®-16 centered transition structures for hydrogenolysis of iridium car-
Initial studies involved hydrogenation of 2-butyne in the presence boxylatesll derived upon protonolytic cleavage of the nitrogen
of furfural-derived aldimines employing [Ir(codBARF and BI- iridium bond (Scheme 1¥.
PHEP as catalyst precursors. The selection ofNkgubstituent To probe regioselectivity, nonsymmetric alkynes 4-methyl-2-
proved critical. For example, attempted hydrogenative coupling of pentyne and 2-hexyne were used as nucleophilic partners in
2-butyne to the “PMP”-protected imine derived frgmranisidine hydrogenative couplings to iminés, 12a and13aunder standard
and furfural under conditions cited in Table 1 provides the product conditions cited in Table 1. Using 4-methyl-2-pentyne, the isopro-
of conventional imine reduction in 65% isolated yield. In contrast, pyl-substituted allylic amined3b, 14b, and 15b are formed as
the corresponding-toluenesulfonyl iminé&a smoothly couples to single regioisomers. Hydrogenative couplings employing 2-hexyne

aCited yields are of isolated material (Rs benzenesulfonyl, Ts=
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Scheme 1. Reductive Coupling under an Atmosphere of GMO069445) for partial support of this research. Umicore is
Deuterium acknowledged for the donation of [Ir(coiBARF.
TSN 83% *H ~ TeNH . . . . .
" Standard Conditions X Supporting Information Available: Experimental procedures and
. D, (1 atm) ? Me spectral datald NMR, 3C NMR, IR, HRMS) for all new compounds,
2a Me—==—Me N ? - including?H NMR spectra ofdeuterio2b. This material is available
(1 atm) 5% “H deuterio-2b .
< o 5% 2H > free of charge via the Internet at http:/pubs.acs.org.
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